Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(V) → ACTIVATE(V)
U611(tt, L, N) → ISNAT(activate(N))
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
U511(tt, V2) → ISNATLIST(activate(V2))
U511(tt, V2) → U521(isNatList(activate(V2)))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U511(tt, V2) → ACTIVATE(V2)
ISNATILIST(V) → U311(isNatList(activate(V)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__0) → 01
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(V) → ISNATLIST(activate(V))
U411(tt, V2) → ISNATILIST(activate(V2))
U621(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
U621(tt, L) → S(length(activate(L)))
ISNAT(n__length(V1)) → U111(isNatList(activate(V1)))
ACTIVATE(n__zeros) → ZEROS
LENGTH(nil) → 01
U411(tt, V2) → U421(isNatIList(activate(V2)))
U411(tt, V2) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ACTIVATE(n__nil) → NIL
ACTIVATE(n__s(X)) → S(activate(X))
U611(tt, L, N) → ACTIVATE(L)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U611(tt, L, N) → ACTIVATE(N)
ZEROSCONS(0, n__zeros)
U621(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
ZEROS01
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(V) → ACTIVATE(V)
U611(tt, L, N) → ISNAT(activate(N))
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
U511(tt, V2) → ISNATLIST(activate(V2))
U511(tt, V2) → U521(isNatList(activate(V2)))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
U511(tt, V2) → ACTIVATE(V2)
ISNATILIST(V) → U311(isNatList(activate(V)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__0) → 01
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(V) → ISNATLIST(activate(V))
U411(tt, V2) → ISNATILIST(activate(V2))
U621(tt, L) → LENGTH(activate(L))
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
U621(tt, L) → S(length(activate(L)))
ISNAT(n__length(V1)) → U111(isNatList(activate(V1)))
ACTIVATE(n__zeros) → ZEROS
LENGTH(nil) → 01
U411(tt, V2) → U421(isNatIList(activate(V2)))
U411(tt, V2) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ACTIVATE(n__nil) → NIL
ACTIVATE(n__s(X)) → S(activate(X))
U611(tt, L, N) → ACTIVATE(L)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ISNAT(n__s(V1)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U611(tt, L, N) → ACTIVATE(N)
ZEROSCONS(0, n__zeros)
U621(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
ZEROS01
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 20 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U611(tt, L, N) → ISNAT(activate(N))
ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
U511(tt, V2) → ISNATLIST(activate(V2))
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
ACTIVATE(n__length(X)) → LENGTH(activate(X))
U611(tt, L, N) → ACTIVATE(L)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U611(tt, L, N) → ACTIVATE(N)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
U621(tt, L) → LENGTH(activate(L))
U621(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNAT(n__length(V1)) → ISNATLIST(activate(V1))
ACTIVATE(n__length(X)) → LENGTH(activate(X))
ISNAT(n__length(V1)) → ACTIVATE(V1)
ACTIVATE(n__length(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.

U611(tt, L, N) → ISNAT(activate(N))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
U511(tt, V2) → ISNATLIST(activate(V2))
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
U611(tt, L, N) → ACTIVATE(L)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U611(tt, L, N) → ACTIVATE(N)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
U621(tt, L) → LENGTH(activate(L))
U621(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
Used ordering: Polynomial interpretation [25,35]:

POL(U511(x1, x2)) = (1/2)x_2   
POL(U62(x1, x2)) = 2 + (4)x_2   
POL(U61(x1, x2, x3)) = 2 + (4)x_2   
POL(activate(x1)) = x_1   
POL(n__nil) = 0   
POL(n__s(x1)) = x_1   
POL(U51(x1, x2)) = 0   
POL(ISNATLIST(x1)) = (1/2)x_1   
POL(tt) = 0   
POL(U611(x1, x2, x3)) = (1/2)x_2 + (2)x_3   
POL(isNatList(x1)) = 0   
POL(zeros) = 0   
POL(U52(x1)) = 0   
POL(s(x1)) = x_1   
POL(U11(x1)) = 0   
POL(isNat(x1)) = 0   
POL(ACTIVATE(x1)) = (1/2)x_1   
POL(nil) = 0   
POL(LENGTH(x1)) = (1/2)x_1   
POL(n__length(x1)) = 2 + (2)x_1   
POL(n__zeros) = 0   
POL(n__cons(x1, x2)) = (4)x_1 + (4)x_2   
POL(U621(x1, x2)) = (1/2)x_2   
POL(0) = 0   
POL(ISNAT(x1)) = (2)x_1   
POL(cons(x1, x2)) = (4)x_1 + (4)x_2   
POL(n__0) = 0   
POL(length(x1)) = 2 + (2)x_1   
POL(U21(x1)) = 0   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented:

length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U62(tt, L) → s(length(activate(L)))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U52(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U611(tt, L, N) → ISNAT(activate(N))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
LENGTH(cons(N, L)) → ACTIVATE(L)
U511(tt, V2) → ISNATLIST(activate(V2))
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
U611(tt, L, N) → ACTIVATE(L)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U611(tt, L, N) → ACTIVATE(N)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
U621(tt, L) → LENGTH(activate(L))
U621(tt, L) → ACTIVATE(L)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 11 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ AND
QDP
                      ↳ QDPOrderProof
                    ↳ QDP
                    ↳ QDP
                    ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(n__cons(x1, x2)) = 1/2 + (4)x_1   
POL(n__s(x1)) = 4 + (4)x_1   
POL(ACTIVATE(x1)) = (4)x_1   
The value of delta used in the strict ordering is 2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ AND
                    ↳ QDP
                      ↳ QDPOrderProof
QDP
                          ↳ PisEmptyProof
                    ↳ QDP
                    ↳ QDP
                    ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ AND
                    ↳ QDP
QDP
                      ↳ QDPOrderProof
                    ↳ QDP
                    ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__s(V1)) → ISNAT(activate(V1))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNAT(n__s(V1)) → ISNAT(activate(V1))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(U62(x1, x2)) = 1/4 + x_2   
POL(n__length(x1)) = (1/2)x_1   
POL(U61(x1, x2, x3)) = (1/4)x_1 + x_2   
POL(n__zeros) = 0   
POL(n__cons(x1, x2)) = (4)x_2   
POL(activate(x1)) = x_1   
POL(n__s(x1)) = 1/4 + (2)x_1   
POL(n__nil) = 1/2   
POL(0) = 0   
POL(U51(x1, x2)) = (4)x_2   
POL(ISNAT(x1)) = (1/4)x_1   
POL(cons(x1, x2)) = (4)x_2   
POL(tt) = 1   
POL(isNatList(x1)) = (2)x_1   
POL(zeros) = 0   
POL(n__0) = 0   
POL(U52(x1)) = (2)x_1   
POL(s(x1)) = 1/4 + (2)x_1   
POL(U11(x1)) = x_1   
POL(length(x1)) = (1/2)x_1   
POL(isNat(x1)) = (4)x_1   
POL(nil) = 1/2   
POL(U21(x1)) = 1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented:

length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U62(tt, L) → s(length(activate(L)))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U52(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ AND
                    ↳ QDP
                    ↳ QDP
                      ↳ QDPOrderProof
QDP
                          ↳ PisEmptyProof
                    ↳ QDP
                    ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ AND
                    ↳ QDP
                    ↳ QDP
QDP
                    ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ DependencyGraphProof
                  ↳ AND
                    ↳ QDP
                    ↳ QDP
                    ↳ QDP
QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
U621(tt, L) → LENGTH(activate(L))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

U411(tt, V2) → ISNATILIST(activate(V2))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zerosn__zeros
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
niln__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.